Ukuran Sudut
1 putaran = 360 derajat (360°) = 2π radianPerbandingan trigonometri

Catatan:
- Sin = sinus
- Cos = cosinus
- Tan/Tg = tangens
- Sec = secans
- Cosec/Csc = cosecans
- Cot/Ctg = cotangens
Dari gambar tersebut dapat diperoleh:

(sec merupakan kebalikan dari cos,
csc merupakan kebalikan dari sin, dan
cot merupakan kebalikan dari tan)
Contoh:
Dari segitiga berikut ini:

Diketahui panjang AB = 12 cm, AC = 13 cm. Hitung semua nilai perbandingan trigonometri untuk sudut A!
Pertama, hitung dulu panjang BC dengan menggunakan rumus Phytagoras:

Nilai perbandingan trigonometri beberapa sudut istimewa
Kuadran
Kuadran adalah pembagian daerah pada sistem koordinat kartesius → dibagi dalam 4 daerahNilai perbandingan trigonometri untuk sudut-sudut di berbagai kuadran memenuhi aturan seperti pada gambar:

Untuk sudut b > 360° → b = (k . 360 + a) → b = a
(k = bilangan bulat > 0)
Mengubah fungsi trigonometri suatu sudut ke sudut lancip
- Jika menggunakan 90 ± a atau 270 ± a maka fungsi berubah:
sin ↔ cos
tan ↔ cot
sec ↔ csc
- Jika menggunakan 180 ± a atau 360 ± a maka fungsi tetap
Nilai negatif diperoleh karena sudut dibuat dari sumbu x, diputar searah jarum jam

Contoh:
- Cos 120º = cos (180 – 60)º = – cos 60º = – 1/2 (120º ada di kuadran II sehingga nilai cos-nya negatif)
- Cos 120º = cos (90 + 30)º = – sin 30º = – 1/2
- Tan 1305º = tan (3.360 + 225)º = tan 225º = tan (180 + 45)º = tan 45º = 1 (225º ada di kuadran III sehingga nilai tan-nya positif)
- Sin –315º = – sin 315º = – sin (360 – 45)º = –(– sin 45)º = sin 45º = 1/2 √2
Identitas Trigonometri
Sehingga, secara umum, berlaku:
sin2a + cos2a = 1
1 + tan2a = sec2a
1 + cot2a = csc2a
Grafik fungsi trigonometri
y = sin x
y = cos x

y = tan x

y = cot x

y = sec x

y = csc x

Menggambar Grafik fungsi y = A sin/cos/tan/cot/sec/csc (kx ± b) ± c
- Periode fungsi untuk sin/cos/sec/csc = 2π/k → artinya: grafik akan berulang setiap kelipatan 2π/k
Periode fungsi untuk tan/cot = π/k → artinya: grafik akan berulang setiap kelipatan π/k
- Nilai maksimum = c + |A|, nilai minimum = c – |A|
- Amplitudo = ½ (ymax – ymin)
- Cara menggambar:
- Gambar grafik fungsi dasarnya seperti pada gambar di atas
- Hitung periode fungsi, dan gambarkan grafik sesuai dengan periode fungsinya
- Jika A ≠ 1, kalikan semua nilai y pada grafik fungsi dasar dengan A
- Untuk kx + b → grafik digeser ke kiri sejauh b/k
Untuk kx – b → grafik digeser ke kanan sejauh b/k
- Untuk + c → grafik digeser ke atas sejauh c
Untuk – c → grafik digeser ke bawah sejauh c
Contoh: y = 2 sin (3x + 90)° + 3→ periode fungsi = 2p/3 = 120°
Langkah-Langkah:
Grafik fungsi y = sin x

Karena periode fungsinya 2π/3, maka dalam selang 0 hingga 2π, terjadi 3 gelombang sinus → y = sin 3x

Ampitudo dikali 2 → y = 2 sin 3x

Grafik digeser ke kiri sejauh 90°/3 = 30° = π/6 → y = 2 sin (3x + 90)°

Grafik digeser ke atas sejauh 3 satuan → y = 2 sin (3x + 90)° + 3

Aturan-Aturan pada Segitiga ABC

Dari segitiga ABC di atas:

Sehingga, secara umum, dalam segitiga ABC berlaku rumus:

Aturan Cosinus
Dari segitiga ABC di atas:

Sehingga, secara umum:

Luas Segitiga
Dari segitiga ABC di atas diperoleh:

Sehingga, secara umum:

Rumus Jumlah dan Selisih Sudut
Dari gambar segitiga ABC berikut:
AD = b.sin α
BD = a.sin β
CD = a.cos β = b.cos α

Untuk mencari cos(α+β) = sin (90 – (α+β))°

Untuk fungsi tangens:

Sehingga, rumus-rumus yang diperoleh adalah:

Rumus Sudut Rangkap

Sehingga, rumus-rumus yang diperoleh adalah:


Rumus Perkalian Fungsi Sinus dan Kosinus
Dari rumus-rumus jumlah dan selisih dua sudut dapat diturunkan rumus-rumus baru sebagai berikut:
Sehingga, rumus-rumus yang diperoleh:

Rumus Jumlah dan Selisih Fungsi Sinus dan Kosinus
Dari rumus perkalian fungsi sinus dan kosinus dapat diturunkan rumus jumlah dan selisih fungsi sinus dan kosinus.
Maka akan diperoleh rumus-rumus:

Contoh-contoh soal:
(1) Tanpa menggunakan daftar, buktikan bahwa:

(2) Buktikan bahwa dalam segitiga ABC berlaku:

0 komentar:
Posting Komentar